The Preparation and X-Ray Structures of Di-μ-sulfido- and μ-Oxo-μ-sulfido-bis[tris(isothiocyanato)oxomolybdate(V)] Ions

Takashi Shibahara, Hisao Kuroya, Keiji Matsumoto,**,† and Shun'ichiro Ooi†

Department of Chemistry, Okayama University of Science, Ridai-cho 1-1, Okayama 700

†Department of Chemistry, Faculty of Science, Osaka City University, Sumiyoshi-ku, Osaka 558

(Received March 3, 1983)

The crystal structures of $(pyH)_4[Mo_2O_2S_2(NCS)_6]$ (1) (pyH=pyridinium ion) and $(pyH)_4[Mo_2O_3S(NCS)_6]$ · $2H_2O$ (2) have been determined from the diffractometer data. The 1 and 2 structures were refined by the least-squares method to R 0.041 and 0.064 for 2728 and 2349 non-zero reflections respectively. The two structures are isomorphous. Each Mo(V) ion has a distorted octahedral coordination, and two coordination octahedra share a common edge to form a binuclear complex. The binuclear complex contains a mirror plane through two bridging atoms. The two terminal oxo ligands on each Mo(V) are cis to each other and cis to the bridging oxo or sulfido. The Mo-N(NCS) bond length trans to the $Mo-O_t$ (terminal oxo) is ca. 0.1 Å longer than the other Mo-N(NCS) bond lengths, showing the large trans effect of the O_t ligand.

Although the preparation and X-ray structure of the $(pyH)_4[Mo_2O_4(NCS)_6] \cdot H_2O$ complex with the di- μ -oxo bridge have been reported, 1 no similar complex containing the di- μ -sulfido or μ -oxo- μ -sulfido bridge has yet been preparad. In this paper, we wish to describe the preparation and structures of $(pyH)_4[Mo_2O_2S_2(NCS)_6]$ (1) and $(pyH)_4[Mo_2O_3S(NCS)_6] \cdot 2H_2O$ (2) and to compare the structures of the two complexes with that of $(pyH)_4[Mo_2O_4(NCS)_6] \cdot H_2O^{1}$ in connection with the trans bond-weekening effects of the terminal oxo, bridging oxo, and bridging sulfido.

Experimental

Preparation of 1 and 2. Complex 1 was prepared by the addition of sodium thiocyanate about six times the molar quantity of the aqua-ion $[Mo_2O_2S_2(H_2O)_6]^{2+}$ in 1 mol dm⁻³ of HCl,²⁾ followed by the drop-by-drop addition of pyridine (ca. one thirtieth of the volume of the aqua-ion solution). After the solution had stood in a refrigerator a couple of days, the red crystals which had deposited were filtered by suction and air-dried. Yield, 85%. Found: N, 14.67; C, 32.51; H, 2.53%. Calcd for (pyH)₄[Mo₂O₂S₂(NCS)₆]: N, 14.64; C, 32.64; H, 2.53%.

Complex 2 was prepared similarly by the use of the aqua ion $[Mo_2O_3S(H_2O)_6]^{2+}$ in 1 mol dm⁻³ HCl³⁾ instead of the $[Mo_2O_2S_2(H_2O)_6]^{2+}$ used for the preparation of 1. Yield, 70%. Found: N, 14.87; C, 33.29; H, 2.50%. Calcd for $(pyH)_4[Mo_2O_3S(NCS)_6] \cdot 2H_2O$: N, 14.34; C, 31.97; H, 2.89%.

X-Ray-data Collection. Complex 1 crystallizes in the form of red square-prisms. The crystal of 2 is thin red plate. The 1 and 2 crystals were mounted in an arbitrary orientation on a Philips PW1100 automated diffractometer. The PW1100 programs obtained 17 centered reflections for 1 and 15 for 2, and an orientation matrix for each crystal, and then identified the monoclinic cells for the two crystals. P2₁/m space group for 1 and 2 was assumed throughout the structure analyses and was confirmed by the successful refinement of the structures. The unit-cell dimensions were refined by the least-squares analyses of the θ values of 36 reflections for 1 and of 38 for 2. The crystal data and experimental details for 1 and 2 are given in Table 1. The intensity data were collected by the use of Mo Ka radiation. During the data collection, three standard reflections were monitored every 4 h to check the stability and orientation of each crystal. Both compounds remained quite stable. Each data set was corrected for Lorenz-polarization effects, 4) but not for absorption

Structure Solution and Refinement. The structure of 1 was first solved by the Patterson-Fourier method. The structure solution of 2 was straightforward because the 1 and 2 structures are isomorphous. The refinement of the structures was carried out by the use of the block-diagonal least-squares method. The function minimized was $\sum w(F_0 - |F_c|)^2$, where $w=1/\sigma^2(F_0)$ was used. The neutral atomic scattering factors for the Mo, S, O, N, and C atoms were taken from Ref. 5, with an anomalous dispersion corrections ($\Delta f'$) for the Mo and S atoms. The final R values were 0.041 for 1 and 0.064 for 2. No attempt was made to locate hydrogen atoms. The N atom of the pyridinium ion could not be identified in either crystal. The positions of the N atoms were determined on the basis of short contact distances (Table 4), because the N-H group of the pyridinium ion is expected to form a hydrogen bond. No chemically significant peaks were observed on the final difference Fourier maps for 1 and 2. The maximum peaks were 0.6 e Å-3 for 1 and 0.6 e Å-3 for 2. No water of crystallization was found in 1. The F_o-F_c tables for 1 and 2 and the anisotropic temperature factors are preserved by the Chemical Society of Japan (Document No. 8340). The final atomic coordinates are given in Tables 2 and 3. The figures were drawn by the use of ORTEP.6) The computations were performed by the use of a FACOM 230-60 computer at Osaka City University and an ACOS-900 computer at the Crystallographic Research Center, Institute for Protein Research, Osaka University, using Programs in the UNICS.7)

Results and Discussion

Perspective views of the complex ions in 1 and 2 are given in Figs. 1 and 2. Each complex contains a crystal-lographic mirror plane through the two bridging atoms. Therefore, both complexes have the cis-dioxo structure. Each structure consists of two distorted octahedra sharing as SS or OS edge. The geometries and dimensions of Mo₂O₂S₂ and Mo₂O₃S cores do not significantly differ from those of the corresponding cores in the other binuclear Mo(V) complexes. The deviation of the Mo atom from the mean plane defined by the S₂N₂ plane to O1 is 0.28 Å in 1, while that from the OSN₂ plane to O1 is 0.28 Å in 2. The bond distances and angles are listed in Table 4, while important interatomic distances and dihedral angles are compared in Table 5. The Mo-Mo and O1-O1 distances are larger in 1 than in 2, in

Table 1. Summary of crystal data and experimental details

Compound	$1 \text{ (pyH)}_{4} [\text{Mo}_{2}\text{O}_{2}\text{S}_{2}(\text{NCS})_{6}]$	$2 (pyH)_4 [Mo_2O_3S(NCS)_6] \cdot 2H_2O$
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/m$	$P2_1/m$
$a/ ext{Å}$	15.669 (5)	15.898 (9)
$b/ ext{Å}$	13.107(4)	13.207 (4)
c/Å	9.173(3)	9.085(4)
<i>β</i> /°	96.77(3)	94.04(4)
F(000)	996	980
F.W.	993.0	976.9
$U/ m \AA^3$	1870.8 (10)	1902.7 (15)
\overline{Z}	2	2
$D_{ m m}/{ m g~cm^{-3}}$	1.74	1.68
$D_{\rm c}/{\rm g~cm^{-3}}$	1.76	1.70
$\mu(\text{Mo }K\alpha)/\text{cm}^{-1}$	11.4	10.7
Crystal size/mm³	$0.08 \times 0.08 \times 0.13$	$0.04 \times 0.08 \times 0.14$
Scan type	ω	ω
Scan speed/° s ⁻¹	0.033	0.033
Scan range/°	0.9	1.0
$2\theta_{\text{max}}/^{\circ}$	50	50
Background measurement	Half of the scan time	Half of the scan time
Number of unique reflections with	2728	2349
$F_0^2 \ge 3\sigma(F_0^2)$		
R(R')	0.041 (0.060)	0.064(0.085)

Table 2. Atomic coordinates (\times 10⁵ for Mo and \times 10⁴ for others) and temperature factors (\times 10⁴ for Mo and \times 10³ for others) for 1 (pyH)₄[Mo₂O₂S₂(NCS)₆], with their estimated standard deviations in parentheses

Table 3. Atomic coordinates (\times 10⁵ for Mo and \times 10⁴ for others) and temperature factors (\times 10⁴ for Mo and \times 10³ for others) for 2 (pyH)₄[Mo₂O₃S(NCS)₆]·2H₂O, with their estimated standard deviations in parentheses

						DE LA LITERA IN LINEAR INCOME.					
Atom	x	у	z	$U_{\rm eq}/{ m \AA}^{2~a}$		Atom	x	ν	z	$U_{\rm eq}/{ m \AA}^{2}$	
Mo	18082 (3)	35785 (5)	3970 (5)	427	-	Mo	17567 (6)	35176 (7)	2266 (8)	480	
S1	3411 (2)	5890 (2)	3932 (3)	92		Sl	3264 (3)	5870 (4)	3701 (S)	120	
S2	848 (2)	5915 (3)	-3625(3)	112		S2	837 (4)	5843 (S)	-3682(6)	157	
S3	4557 (2)	4035 (2)	- 1945 (2)	70		S3	4492 (2)	4074 (3)	-2173(5)	90	
S4	1319 (2)	2500 ` ´	-1516(2)	44		S4	1294(3)	2500	-1732(4)	51	
S 5	2643 (2)	2500	1948 (2)	48		O2	2391 (6)	2500	1397 (9)	54	
O 1	929 (3)	3747 (4)	1260 (5)	58		O 1	895 (5)	3687 (6)	1145 (7)	63	
N1	2457 (4)	4788 (5)	1724 (6)	63		N1	2416 (6)	4630 (7)	1644 (10)		
N2	1400 (4)	4796 (5)	-1154(6)	63		N2	1422 (6)	4766 (7)	-1246(9)	66	
N3	3003 (4)	3851 (5)	- 725 (6)	57		N3	2984 (6)	3752 (7)	-863(9)	63	
C 1	2852 (4)	5229 (5)	2668 (7)	53		$\mathbf{C}1$	2771 (7)	5156 (9)	2487 (12)		
C2	1166 (4)	5247 (S)	-2192(7)	55		C 2	1196 (7)	5241 (9)	-2217(11)		
C3	3636 (4)	3943 (5)	-1240(6)	49		C3	3605 (7)	3890 (8)	-1373(10)		
NA1	1108 (6)	2500 ` ´	4380 (9)	96		NA1	1165 (10)	2500	4271 (14)		
CA2	1479 (6)	1603 (6)	4714 (8)	75		CA2	1562 (10)	1609 (10)	4586 (12)		
CA3	2299 (6)	1603 (6)	5479 (7)	81		CA3	2386 (10)	1625 (11)	5241 (12)		
CA4	2710 (7)	2500	5846 (10)			CA4	2794 (13)	2500	5558 (17)		
NB1	9335 (7)	2500	9750 (11)			NB1	9319 (10)	2500	9760 (15)		
CB2	9242 (7)	1614 (8)	9021 (13)			CB2	9238 (10)	1592 (13)	9007 (19)		
CB2	8959 (7)	1657 (9)	, ,			CB3	9010 (10)	1594 (13)	7589 (18)		
			7402 (13)			CB4	8826 (14)	2500	6943 (23)		
CB4	8863 (9)	2500	6836 (15)			NC1	3994 (11)	2500	2236 (17)		
NC1	4732 (5)	2500	1428 (10)			CC2	4301 (10)	1702 (12)	2634 (16)		
CC2	4741 (4)	1609 (5)	2167 (8)	60		CC3	4968 (10)	1599 (9)	3701 (17)		
CC3	4756 (5)	1592 (6)	3617 (9)	68		CC4	5313 (15)	2500	4220 (23)		
CC4	4771 (6)	2500	4402 (11)	70		ND1	5962 (11)	2500	-201 (18)	107	
ND1	7000 (7)	2500	2766 (13)	103		CD2	6275 (11)	1600 (12)	285 (22)	131	
CD2	6952 (6)	1593 (6)	2026 (11)	88		CD3	6933 (10)	1619 (13)	1384 (27)	150	
CD3	6860 (6)	1584 (8)	520 (9)	96		CD4	7252 (15)	2500	1858 (34)	142	
CD4	6774 (8)	2500 `	-236(12)	114		OW	9026 (8)	1291 (10)	3301 (13)		
a) $U_{\rm eq} =$	a) $U_{\text{eq}} = (U_{11} + U_{22} + U_{33})/3.$						$(U_{11} + U_{22} + U_{23} + U_{24})$	$(J_{33})/3.$			

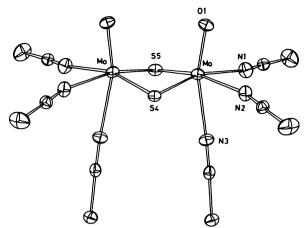


Fig. 1. A perspective view of $[Mo_2O_2S_2(NCS)_6]^{4-}$. The thermal ellipsoid was drawn at the 40% probability level.

accordance with the larger size of the sulfur compared to that of the oxygen in the bridge. On the other hand, the S_b -Mo-Ol (S_b : bridging sulfido) and O_b -Mo-Ol (O_b : bridging oxo) angles in the cores in 1 and 2 have similar values. The angle between the two MoOs planes in 1 is very close to that between the two MoOs planes in 2. The MoS₂-MoS₂ dihedral angle of 153.4° and the MoOS-MoOS dihedral angle of 153.8° are similar to those in Ba[Mo₂O₄(ox)₂(H₂O)₂]·10H₂O⁸) and $C_{s_2}[Mo_2O_2S_2(ox)_2(H_2O)_2]\cdot2H_2O^9$, but smaller than those in $K_6[\{Mo_2O_3S(ox)_2\}_2(ox)]\cdot10H_2O^3$ and $K_6-[\{Mo_2O_4(mal)_2\}_2(mal)]\cdot4H_2O^{.10}$. The Mo-Ol dis-

Fig. 2. A perspective view of [Mo₂O₃S(NCS)₆]⁴⁻.

tance in 1 is 1.683 Å and that in 2, 1.669 Å. These values are in agreement with those previously reported. The Mo–S (bridging sulfido) distances in 1 and 2 range from 2.301 to 2.313 Å, and the Mo–O (bridging oxo) distance in 2 is 1.950 Å. The S–Mo–S, O–Mo–S, Mo–S–Mo, and Mo–O–Mo angles in the bridges agree well with those in Na₂[Mo₂S₂O₂(R-pdta)]·4H₂O, 12) and Na₂[Mo₂O₃S(R-pdta)]·4H₂O. The bond lengths and angles for the Mo₂S₂O₂ core in 1 are similar to those in Na₂[Mo₂O₃S(R-pdta)]·4H₂O, and the bond lengths and angles for the Mo₂O₃S core in 2 are similar to those in Na₂[Mo₂O₃S(R-pdta)]·4H₂O. The large trans effect of terminal oxo (O_t=O1) was observed in these cases,

TABLE 4. INTERATOMIC DISTANCES AND ANGLES, WITH THEIR ESTIMATED STANDARD DEVIATIONS IN PARENTHESES

Bond length	l/Å		D 1 1	φ /°		
	1	2	Bond angle	1	2	
Mo-Ol	1.683(6)	1.669(6)	S4-Mo-S5	101.95(8)		
Mo-S4	2.313(2)	2.308(4)	S4-Mo-O2		98.3(3)	
Mo-S5	2.301(2)		Mo-S4-Mo	75.36(7)	71.2(2)	
Mo-O2		1.950(9)	Mo-S5-Mo	75.81(7)		
Mo-N1	2.176(6)	2.17(2)	Mo-O2-Mo		87.1(4)	
Mo-N2	2.183(6)	2.17(3)	S5-Mo-O1	103.1(2)		
Mo-N3	2.269(6)	2.27(2)	S4-Mo-O1	102.8(2)	103.6(3)	
N1-C1	1.16(1)	1.15(3)	O2-Mo-O1		103.4(4)	
N2-C2	1.14(1)	1.12(4)	N1-Mo-O1	89.7(3)	89.5(5)	
N3-C3	1.15(1)	1.13(2)	N2-Mo-O1	91.0(3)	91.8(7)	
C1-S1	1.620(7)	1.61(3)	N3-Mo-O1	163.4(3)	163.9(5)	
C2-S2	1.609(7)	1.62(4)	Mo-N1-C1	162.8(6)	174(2)	
C3-S3	1.655(7)	1.65(3)	Mo-N2-C2	163.9(6)	164(3)	
Mo-Mo	2.827(2)	2.688(2)	Mo-N3-C3	175.7(6)	178(1)	
O1O1	3.269(9)	3.14(2)	N1-C1-S1	177.2(7)	178(2)	
N3N3	3.54(2)	3.31(4)	N2-C2-S2	178.0(7)	175(3)	
Short contact			N3-C3-S3	177.9(6)	178(2)	
NA1···S2(I)a)	3.699(9)					
NA1···O1(II)	3.28(1)	3.25(2)				
NB1···O1(III)	3.16(2)	3.14(2)				
NC1···S5(II)	3.363(9)					
NC1···O2(II)		2.61(2)				
ND1···S3(II)		3.52(2)				

a) Roman numerals refer to the following equivalent positions: (I) -x, -1/2+y, -z; (II) x, 1/2-y, z; (III) 1+x, 1/2-y, 1+z.

Table 5. Comparison of the interatomic distances^{a)} and dihedral angles

	l/Å								φ/° D°)
	$\widetilde{\mathrm{Mo-O_t}}$	Mo-O _b	Mo-S _b	Mo-N ^{b)}	Mo-N°	Mo-N ^{d)}	Мо-Мо	$O_t \cdots O_t$	D_{e}
1	1.683(6)		2.301 (2) 2.313 (2)	2.269(6)	2.176 (6) 2.183 (6)		2.827(2)	3.269 (9)	153.4
2 3 ^{f)}	1.669 (6) 1.645 (5)	` '	2.308(4)	2.27 (2) 2.251 (7)	2.17(2)	2.17(3) 2.142(4)	2.688 (2) 2.581 (1)	3.14(2)	153.8

a) O_t : Terminal oxo; O_b : bridging oxo; S_b : bridging sulfido, b) trans to O_t , c) trans to S_b , d) trans to O_b , e) Dihedral angle between the two MoS_2 or MoOS planes. f) Average values except for the Mo–Mo distance in $(pyH)_4[Mo_2O_4(NCS)_6] \cdot H_2O$; Ref. 1.

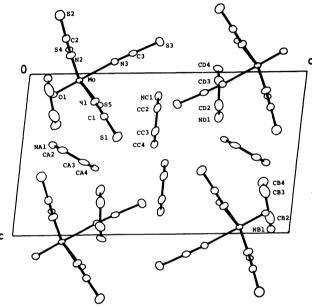


Fig. 3. Crystal structure of $(pyH)_4[Mo_2O_2S_2(NCS)_6]$ viewed down the b axis.

too. The Mo–N bonds trans to $O_t(O1)$ are ca. 0.1 Å longer than the other Mo–N bonds, as in the case of $(pyH)_4[Mo_2O_4(NCS)_6]\cdot H_2O.^{1)}$ We found no significant difference between the Mo–N bond lengths trans to the bridging oxo and those trans to the bridging sulfido.

The crystal structure of 1, as viewed down the b axis,

is shown in Fig. 3. The crystal consists of $[Mo_2O_2S_2-(NCS)_6]^{4-}$ ions, and $(pyH)^+$ ions. The short contact distances are given in Table 4.

References

- 1) B. Jezowska-Trzebiatowska, T. Glowiak, M. F. Rudolf, M. Sabat, and J. Sabat, Russ. J. Inorg. Chem., 22, 1950 (1977).
- 2) F. A. Armstrong, T. Shibahara, and A. G. Sykes, *Inorg. Chem.*, **17**, 189 (1978).
- 3) T. Shibahara, S. Ooi, and H. Kuroya, *Bull. Chem. Soc. Jpn.*, **55**, 3742, (1982).
- 4) J. Hornstra and B. Stubbe, PW1100 Data Processing Programs, Philips Research Laboratories, Eindhoven, Holland,
- 5) "International Tables for X-Ray Crystallography," Kynoch Press, Birmingham (1974), Vol. IV, pp. 71, 148.
- 6) C. K. Johnson, "OREP," Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tenn. (1965).
- 7) "The Universal Crystallographic Computation Program System," The Crystallographic Society of Japan, Tokyo (1969).
- 8) F. A. Cotton and S. M. Morehouse, *Inorg. Chem.*, **4**, 1377 (1965).
- 9) W. S. McDonald, Acta Crystallogr., Sect. B, 1978, 2850.
- 10) T. Shibahara, H. Kuroya, K. Matsumoto, and S. Ooi, *Inorg. Chim. Acta*, **54**, L75 (1981).
- 11) B. Spivack and Z. Dori, *Coord. Chem. Rev.*, 17, 99 (1975); E. I. Stiefel, *Prog. Inorg. Chem.*, 22, 1 (1977), and the references cited therein.
- 12) A. Kojima, S. Ooi, Y. Sasaki, K. Z. Suzuki, K. Saito, and H. Kuroya, Bull. Chem. Soc. Jpn., 54, 2457 (1981).